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ADAPTIVE HYDROGENATION CATALYSIS COVALENT-BINDING OF IONIC LIQUID TO THE
” SILICA SURFACE
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TH-2°Si CP-MAS spectrum of Ru@SILP;g and line-shape decompositions.
T,5 indicate different levels of covalent-grafting. Recorded at 17.0 kHz
MAS, 11.7 T.

(a) Using Ru nanoparticle-loaded supported ionic liquid phases (Ru@SILPs) as adaptive catalysts for
hydrogenation reactions. When a H,/CO, gas mixture is used as feed gas, in situ-generated formate inhibits the
hydrogenation of the carbonyl groups and thus changes the reaction selectivity.l'! (b) Different hydrogenation
catalysts studied in this project. The CO,-responsive selectivity increases from left to right accompanied with
an increase in formate concentration in the reaction mixture.l?
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IMMOBILIZATION OF FORMATE ON THE SURFACE
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(a) H spin-echo spectra. The samples were prepared by impregnating formic acid on the catalysts. (c) Three techniques to acquire 13C MAS NMR spectra. y K e
(b) 'H transverse relaxation times (T,) of formate determined from spin-echo decay curves as a probe for (d) Polarization transfer efficiencies calculated from the ratio of integrals of the
molecular mobility'®l. Shorter T,-values on the two SILPs (right) suggest larger residual homonuclear dipolar formate signal relative to the Direct-Pulse spectra. Formate impregnated on the
couplings caused by immobilization of formate on the surface. (a-b) Recorded at 17.0 kHz MAS, 11.7 T. SILPs showed low INEPT efficiency and high Cross-Polarization efficiency
suggesting reduced mobility.l¥ Recorded at 12.0 and 17.0 kHz MAS, 11.7 T.
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DISTANCE MEASUREMENTS FOR DERTERMINING SILP CONFORMATIONS AND PROBING ORDERING PHENOMENA
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(a) Structure of a SILPpp,3 material as a model system. 31P-31P and 3'P-2°Si distances o2 4 0 8 10 2 a0 ° 2 4 6 8 0 e e
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are determined by solid-state NMR experiments to build the conformational model. (67!
We are currently working on computational modeling of the SILP system based on (c) Result of the 3P DQ-DRENAR experiments measured on SILPp,; materials with different loading
Molecular Dynamics simulations taking these NMR distances as structural restraints. degrees. First five data points were fitted to a quadratic function (S,-S’)/S, = 0.86m%(b+NT,)?/15 to

extract the 31P-31P effective dipolar coupling strengths and distances. Reduction in the distances at
lower loading degrees suggests a change in the grafting density instead of the coverage area. Spectra
recorded at 200 K, 8.0 kHz MAS, 11.7 T. Loading degrees are relative to the highest one.

(b) Double-Quantum-based Dipolar Re-coupling Effects Nuclear Alignment Reduction
(DQ-DRENAR) experiment for measuring homonuclear dipolar coupling strengths
between 3'P spins.l8l The relative differences of the signal with (S’, phase shift 8=0) and

without dipolar-recoupling (S,, phase shift 8=90°) are fitted as a function of the re- (d) Result of the 2°Si{3'P} REDOR experiments measured on the SILPy,; material with the highest
coupling time NT.. loading degree. Spectra recorded at 280 K, 17.0 kHz MAS, 16.4 T.
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« TH T, and '3C-detected experiments proved the immobilization effect of formate on SILPs.

« TH and '3C chemical-shift values and the "H-'H spin-diffusion spectrum provide information about
the molecular interactions involving the positively charged head groups on the ionic liquid.

* Interactions identified by NMR confirm the previously observed increasing formic acid generation.

« 31P-31P and 31P-2°Sij effective dipolar coupling strengths and distances were measured with solid-
state NMR experiments, which can be used to study the structure and conformation of SILPs.
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